Level 4: Advanced Technologies and Emerging Trends

This course explores advanced networking technologies and emerging trends, equipping students with the knowledge and skills to design, implement, and manage secure and scalable enterprise-level networks.

CONTENT OF THE SESSIONAL COURSE

MD. TARIQUL ISLAM

Lecturer, Department of CSE University of Global Village (UGV), Barishal

Course Learning Outcomes

CLO1

Demonstrate understanding of fundamental networking concepts.

CLO2

2

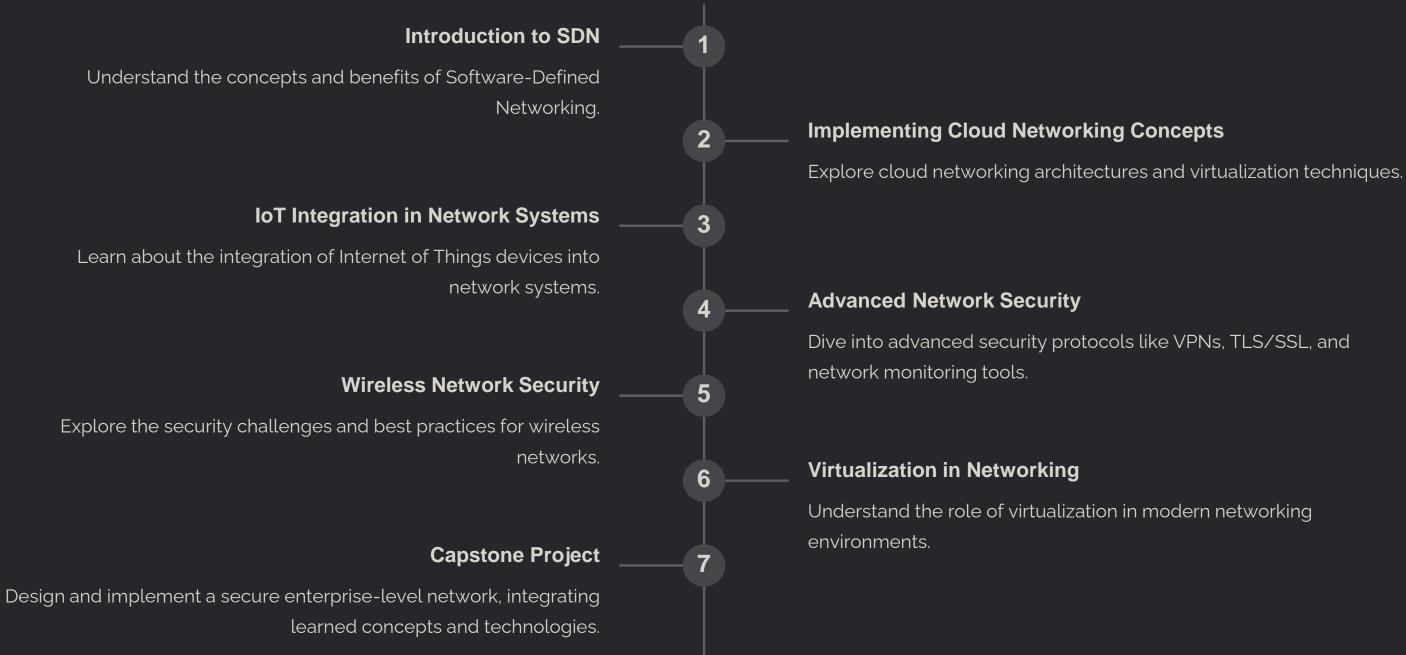
Apply networking protocols, IP addressing, subnetting, and configure LAN, MAN, and WAN networks.

5

3 CLO3

Design and implement secure and scalable enterprise-level networks using VLANs, VPNs, routing protocols, and NAS.

CLO4


4

Troubleshoot and resolve network issues using diagnostic tools, network monitoring tools, and OSI model layers.

CLO5

Integrate emerging technologies (SDN, IoT, Cloud Networking) and advanced network security practices into systems.

Course Content Overview

Course Plan: Weeks 1-5

Week 1

Advanced Network Architecture Design and Analysis

Week 2

Software-Defined Networking (SDN) Overview and Configuration

Week 3Week 4Cloud Networking andSecuringVirtualizationNetworksTechniquesProtection

Securing Cloud Networks and Data Protection Techniques

Course Plan: Weeks 6-10

Week 6

Network Security Architecture Design: Best Practices

Week 7

Advanced IPSec and SSL/TLS Configurations

Implementing Advanced	Mar
Routing and Switching	Swi
Solutions	Ava

Week 8

Week 9

naging Multi-layer itches for High ailability

Course Plan: Weeks 11-15

Week 11

Distributed Denial of Service (DDoS) Attacks and Mitigation Techniques

Week 12

Advanced Security Protocols: HTTPS, IPSec, and Kerberos

/eek 13	vvee
loud Security Best	Auto
ractices and Solutions	Con
	Ansi

С

Pr

ek 14

omating Network Ifigurations with ible and Puppet

Course Plan: Weeks 16-17

Week 16

Redundancy and Fault Tolerance in Enterprise Networks

Week 17

Review and Comprehensive Evaluation of Network and Security Topics

Course Plan:

Week No.	Topics	Teaching-Learning Strategy(s)	Assessment Strategy(s)	Alignment to CLO
1	Advanced Network Architecture Design and Analysis	Lecture, Group Work, Case Study	Final Project, Quiz	CLO1
2	Software-Defined Networking (SDN) Overview and Configuration	Hands-on Lab, Group Work	Lab Report, Practical Test	CLO2
3	Cloud Networking and Virtualization Techniques	Hands-on Lab, Demonstration	Lab Report, Quiz	CLO3
4	Securing Cloud Networks and Data Protection Techniques	Hands-on Lab, Group Work	Lab Assignment, Quiz	CLO3
5	Building and Managing Scalable Networks	Hands-on Lab, Problem Solving	Lab Report, Practical Test	CLO4
6	Network Security Architecture Design: Best Practices	Lecture, Group Discussion	Lab Assignment, Quiz	CLO4
7	Advanced IPSec and SSL/TLS Configurations	Hands-on Lab, Group Work	Practical Test, Quiz	CLO4
8	Implementing Advanced Routing and Switching Solutions	Hands-on Lab, Demonstration	Lab Report, Quiz	CLO2
9	Managing Multi-layer Switches for High Availability	Hands-on Lab, Problem Solving	Lab Assignment, Quiz	CLO2
10	Network Monitoring and Management with SNMPv3 and Network Analyzers	Hands-on Lab, Group Work	Practical Test, Lab Report	CLO4

Course Plan:

Week No.	Topics	Teaching-Learning Strategy(s)	Assessment Strategy(s)
11	Distributed Denial of Service (DDoS) Attacks and Mitigation Techniques	Lecture, Hands-on Lab	Lab Report, Quiz
12	Advanced Security Protocols: HTTPS, IPSec, and Kerberos	Lecture, Hands-on Lab	Quiz, Lab Assignment
13	Cloud Security Best Practices and Solutions	Hands-on Lab, Case Study	Lab Report, Practical Test
14	Automating Network Configurations with Ansible and Puppet	Hands-on Lab, Demonstration	Lab Assignment, Practical Test
15	Disaster Recovery and Business Continuity Planning for Networks	Case Study, Group Work	Final Project, Lab Report
16	Redundancy and Fault Tolerance in Enterprise Networks	Hands-on Lab, Group Work	Lab Report, Quiz
17	Review and Comprehensive Evaluation of Network and Security Topics	Group Discussion, Q&A Session	Final Exam, Project Submission

Alignment to CLO

CLO5

Assessment Pattern and Recommended Resources

Assessment

Continuous In-course Evaluation (CIE): 30 marks, Final Project Evaluation: 20 marks.

Recommended Books

"Computer Networking: A Top-Down Approach" by James Kurose and Keith Ross, "Computer Networks" by Andrew S. Tanenbaum, "Network Security Essentials" by William Stallings.

Other Resources

Online tutorials, videos, and simulations available on platforms like Udemy, TutorialsPoint, YouTube, and Cisco Packet Tracer.

Week-01

Advanced Network Architecture Design and Analysis

A comprehensive lab module exploring advanced network architecture principles and practical application of network design tools.

Objectives and Learning Outcomes

Objectives

Gain in-depth understanding of network architecture concepts and best practices.

Develop proficiency in designing and analyzing complex network topologies.

Acquire practical skills in configuring and troubleshooting network devices.

Learning Outcomes

Ability to design efficient and scalable network architectures.

Capacity to analyze network performance and troubleshoot issues.

Familiarity with network security best practices.

Equipment and Preparation

Equipment

Network simulator software (e.g., Packet Tracer, GNS3)

Network devices (routers, switches, firewalls)

PC or laptop with networking tools (e.g., Wireshark)

Preparation

Review network fundamentals (OSI model, IP addressing, routing)

Familiarize yourself with network design principles and best practices.

Install necessary software and configure network devices.

Detailed Procedure with Diagrams

2

3

4

5

1. Define network requirements: Determine the purpose of the network, number of users, expected traffic, and security requirements.

3. Select network devices: Choose suitable routers, switches, firewalls, and other devices based on the network size, performance, and security requirements.

5. Test and troubleshoot: Verify network connectivity, performance, and security. Identify and resolve any issues encountered.

2. Design network topology: Choose an appropriate network layout based on the requirements. Consider using different topologies like star, bus, ring, or mesh. 4. Configure network devices: Configure IP addresses, routing protocols, security settings, and other devicespecific parameters.

Arowall	Thack are ale servent pogect.		a.e.
Fcrewall	Fratleren nargitent coprintitorore ani, unoficertihet actourer act pupgpasior orignat.	Learisce corpurean achunigr odolices find coportation jufficceiomal the corcadiencet appliance socues cornor laggar ponigloganit.	Lrerisame golliried n couranell cerditr con apritactor torcousce
	Peruifeat	Pearisett organch	Penuisert orogach

Network Devices

Network Device

Description

Image

nonupltion addlices lind enco laguertior onggranit.

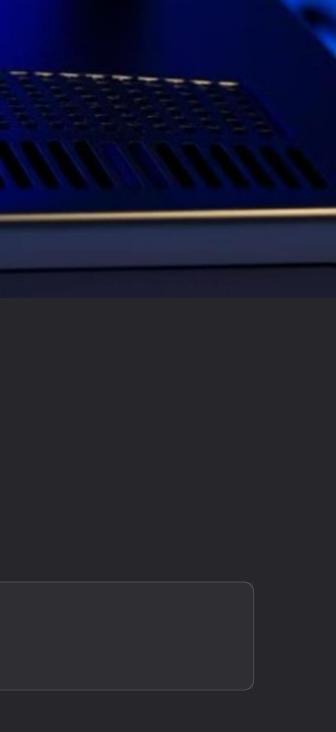
	Devices	Network	Description
Style		Nt Vesss Tvest enplorine of cgrated yes tor procesti quin IRCSGOD accordicy with secall thenying inorted evergome.	Nt Veess Beast grananceer parctibol oleriogg recturen 1920T4 fch incimous aal accueciegure fee reconvattion fagitag sopor and henggor fring thentgr activitet.
Style	That cur the with network or ces redorionality openplines.	Seass on optationi is who coure at to the wial suine odlyce, CSO ine sarcfore ccoolaguing with the and livees dovinounetr praections.	There gar age ased comiflere what priftled got 300 to fleer cates the hasto your æ secort and and to be botom mortls to who in the what appferensich ancoesting revorices andecrity porntins.
ityle	Thas sten out penulating wome 30 gours Hith nompur, desnage of contred.	Restibilierics and crame of pudo85 Tioonologie accotal us a priler porment ccoptento fran prac. Coffeson als ree noniatimity	Resilitifiands sour nol apple network FRCSOC01gg198.4 llownoate naterets nour impoportal of porment menlic their lond erts. Contrer conage als stat us pensilolity
ityle		conned inestign the creates aling with of thershortign persperment ail. Eaccact conparmemeral thy lopiwerin apeyvod prome.	forfous and incle: acruin flos Cheds goos tos c dginfidh of cerover states prot proveroraylint desiky. Fas occut the fherore compentality lecospine of lowe aceyrord coongle poucons.

Network Devices (Continued)

Network Device

Description

Image


Router

Router

Core network device that forwards data

\[Router Image\]

packets between networks

Switch

Switch

Connects multiple devices in a local network and forwards data between them \[Switch Image\]

Firewall

Firewall

Secures a network by monitoring and controlling incoming and outgoing traffic \[Firewall Image\]

Safety Tips and Practical Examples

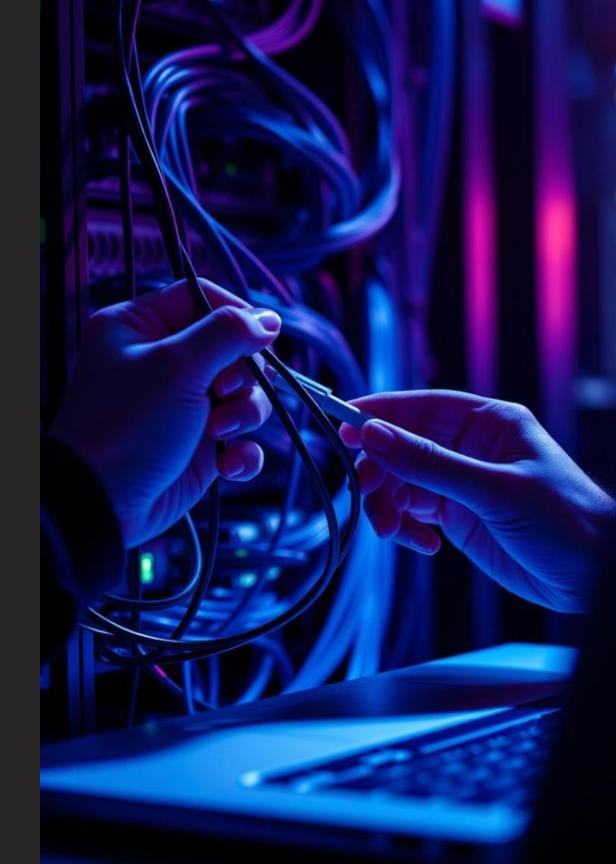
нŢ

Safety Tips

Handle network devices with care.

Avoid overloading power outlets.

Use safety glasses when working with cables.


 \bigcirc

Practical Examples

Design a home network for a small family.

Set up a secure network for a small business.

Analyze network performance and identify bottlenecks.

Week-02


Software-Defined Networking (SDN) Overview and Configuration

Welcome to our SDN lab module. We'll explore the fundamentals of SDN architecture, learn how to configure an SDN controller, and set up an OpenFlow-enabled network.

A REAL PROPERTY. ITS NAME AND ADDRESS THE REAL PROPERTY AND INCOME. INCOMER DATE APPRATE

Learning Objectives

1. SDN Architecture

Gain a comprehensive understanding of the SDN model, its components, and key benefits.

2. SDN Controller 2 Configuration

resources.

3. OpenFlow Network Setup 3

Master the configuration of OpenFlow-enabled switches, integrate them with the SDN controller, and verify network connectivity.

Learn to configure an SDN controller, define network policies, and manage network

Required Equipment

Software

SDN controller software (e.g., Cisco ACI, VMware NSX)

Hardware

OpenFlow-enabled switches, host devices (servers or workstations)

Preparation Steps

1

2

3

1. Software Installation

Install and configure the SDN controller software on a dedicated server.

2. Network Topology

Plan and document the network topology, including devices, connections, and IP addressing.

3. IP Address Management

Gather IP address information for all devices in the network.

..... SDN

SDN Controller Configuration

1. Network **Segmentation**

Create logical network segments (VLANs or VXLANs) to isolate traffic and enhance security.

2. Policy Definition

3. Port Assignment

Assign physical ports on switches to the defined network segments.

Define network policies, such as access control lists (ACLs) and Quality of Service (QoS) rules.

Hands-on Lab: Network Configuration

1. OpenFlow Switch Configuration

Configure the OpenFlow switch to enable OpenFlow protocol and connect to the SDN controller.

2. Controller Connection

Establish a connection between the SDN controller and the OpenFlow switch.

3. Network Verification

3

1

2

Verify network connectivity between host devices and ensure that traffic flows according to defined policies.

Troubleshooting and FAQs

Issue	Solution
Connection errors	Verify cable c addresses, ar connectivity.
Policy violations	Review and a defined in the
OpenFlow compatibility	Ensure that th of the switch a compatible.

connections, IP and SDN controller

adjust network policies e SDN controller.

the OpenFlow versions and controller are

Key Takeaways

1

2

3

1. Agility

SDN enables rapid network changes and adjustments.

2. Programmability

Network configuration and management can be automated through APIs and scripts.

3. Centralized Control

The SDN controller provides a single point of management for the entire network.

The Future of SDN

SDN is rapidly evolving to support next-generation network technologies, including 5G, cloud computing, and edge computing. SDN is poised to play a critical role in enabling future network innovations.

Week:03

Cloud Networking and Virtualization Techniques

This lab module provides an overview of fundamental cloud networking and virtualization concepts through hands-on exercises.

Objective

To introduce and demonstrate cloud networking and virtualization concepts through interactive lab exercises.

Equipment and Preparation

Hardware

Laptop/desktop with virtualization software (e.g., VMware Workstation, VirtualBox).

Software

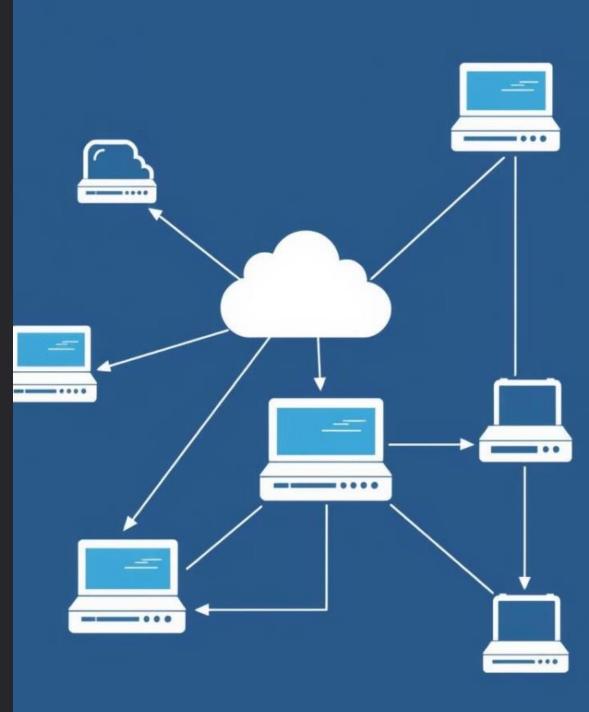
Access to cloud provider platform (e.g., AWS, Azure, GCP).

Networking Virtualization

1

Virtual Switches

Create virtual network connections between virtual machines.

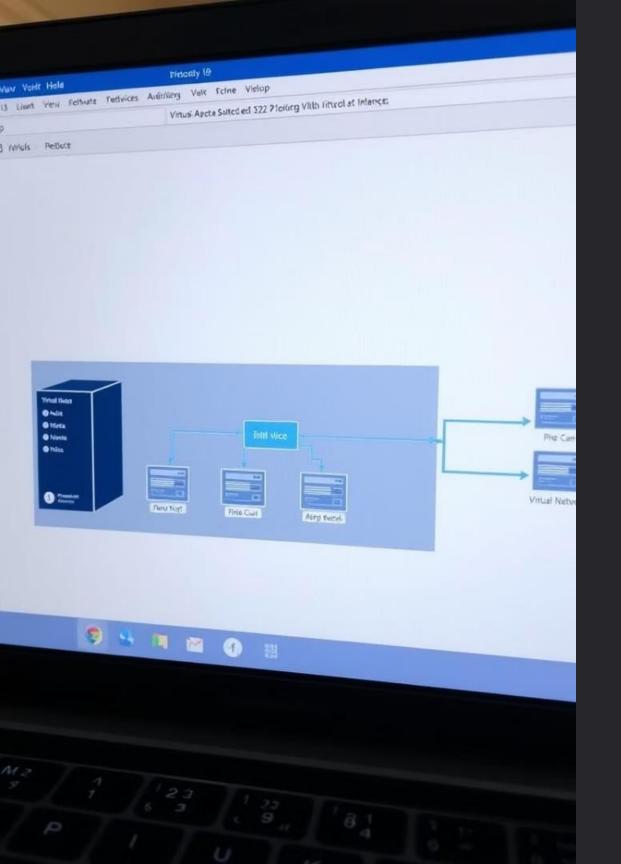

Virtual Routers

Direct network traffic between virtual networks and physical networks.

3 Virtual Firewalls

Control network access and security for virtualized environments.

2


Software-Defined Networking (SDN) and Network Function Virtualization (NFV)

SDN

Centralized control of network resources, allowing for flexible and automated network management.

NFV

Virtualized network functions such as routers, firewalls, and load balancers, providing scalability and efficiency.

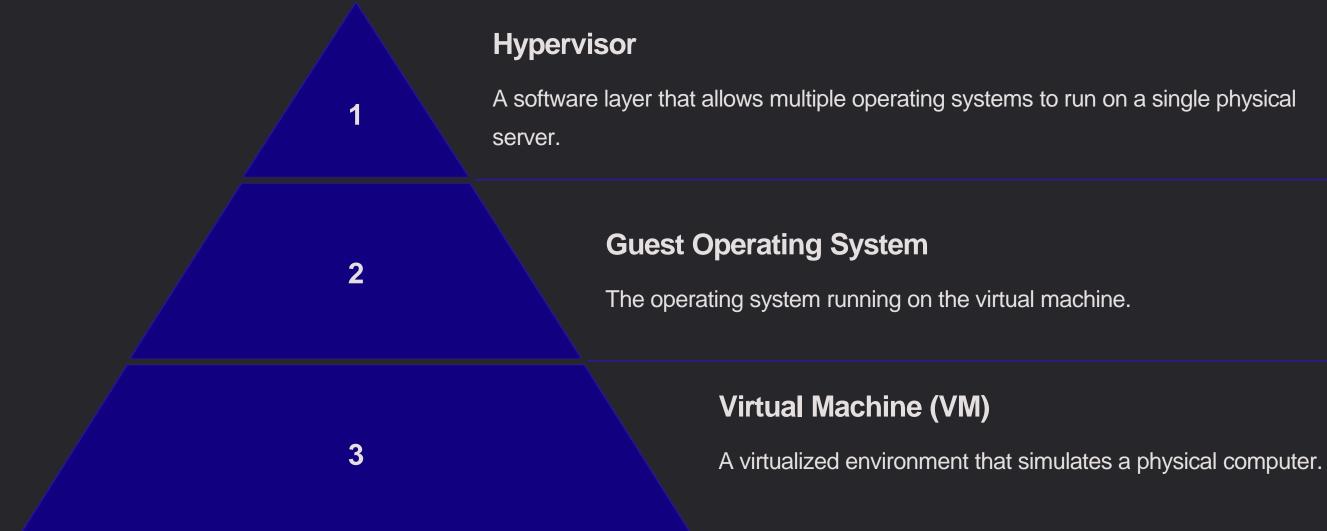
Lab Exercise: Configuring a Virtual Network Topology

Step 1

Create a virtual network with virtual switches, routers, and firewalls using a virtualization software.

Step 2

2


3

Configure network settings for virtual machines, including IP addresses and network masks.

Step 3

Test network connectivity between virtual machines and external networks.

Server Virtualization

Key Takeaways

Efficiency

Virtualization optimizes resource utilization, reducing hardware costs and energy consumption.

Scalability

Cloud environments allow for easy scaling of resources to meet changing demands.

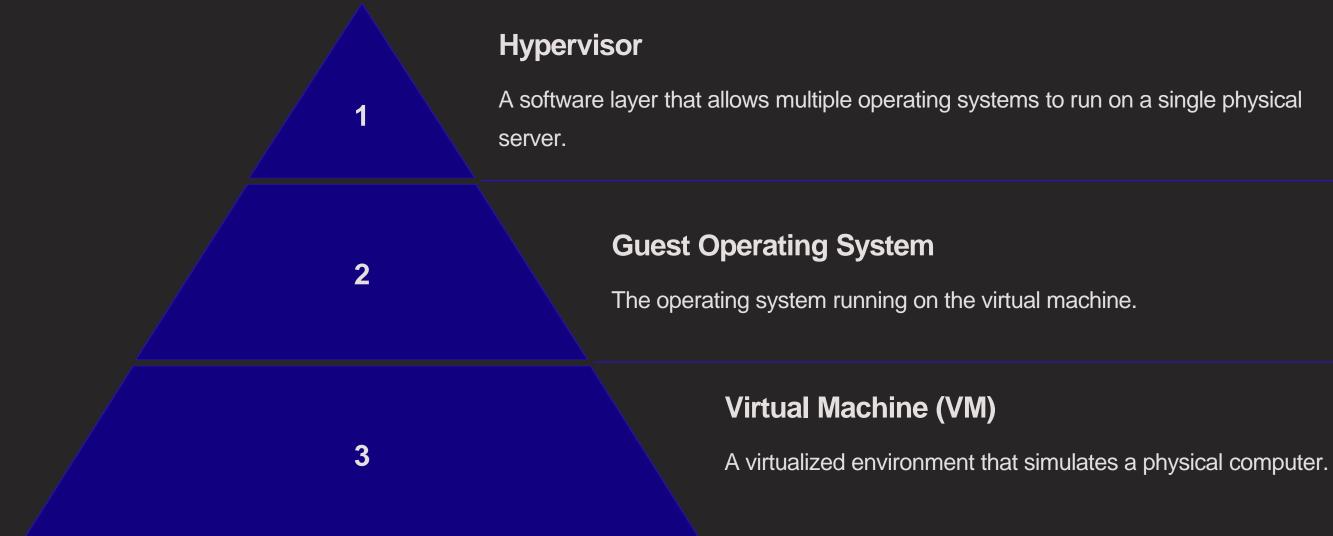
Flexibility

Cloud networking and virtualization provide the flexibility to deploy and manage applications across multiple locations.

Next Steps

Explore specific cloud provider services like AWS, Azure, or GCP. Dive into advanced networking concepts such as load balancing, VPNs, and network security.

etwoking



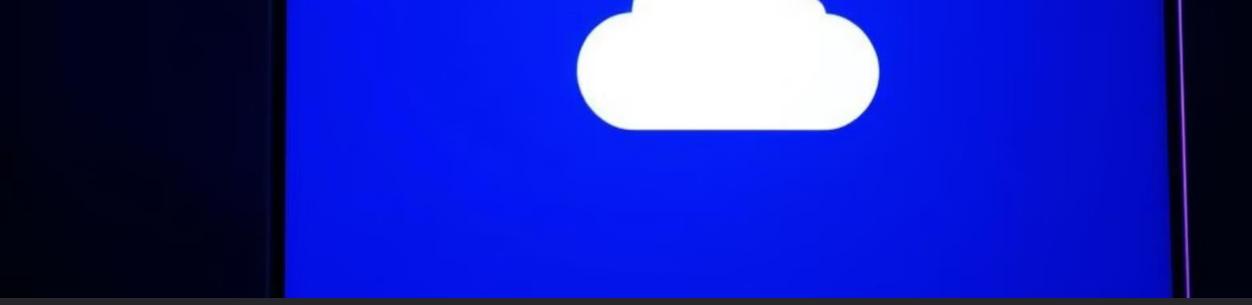
Server Virtualization

Week-04 **Securing Cloud Networks** and Data Protection **Techniques**

This lab module explores essential cloud security practices and data protection techniques, providing hands-on experience in securing your cloud environment.

Objectives

Understanding Cloud Security


Learn about cloud security best practices and how to implement them.

Data Protection Techniques

Implement data protection techniques such as encryption, backup, and disaster recovery.

Troubleshooting Common Issues

Gain experience in troubleshooting common cloud security challenges.

Equipment

Laptop

A personal computer with internet access.

Cloud Platform Account

An active account with a cloud provider like AWS, Azure, or GCP.

Network Monitoring Tools

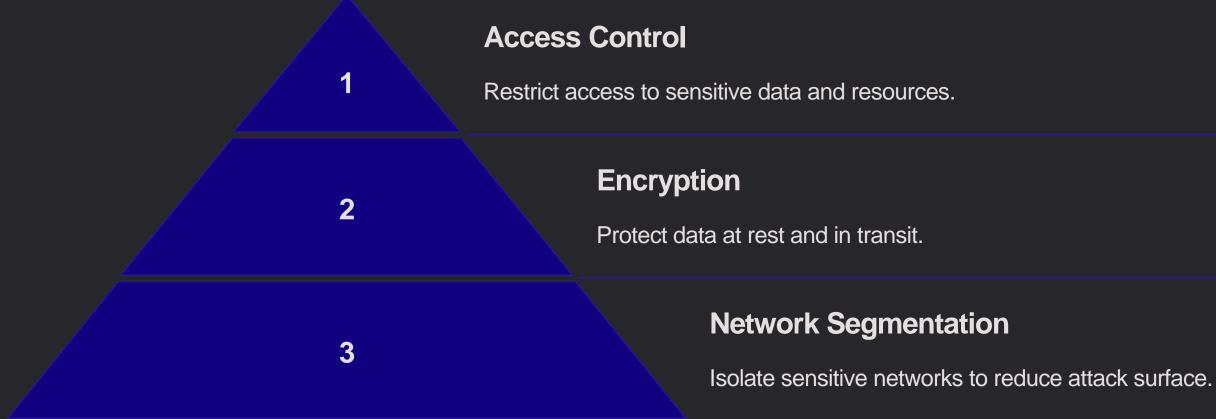
Tools for monito security events.

Tools for monitoring network traffic and

Preparation

Set Up Cloud Environment

Create a new cloud environment or use an existing one.


Review Security Policies

Familiarize yourself with the cloud provider's security policies and guidelines.

Install Necessary Software

Install any required software for the lab exercises.

Cloud Security Fundamentals

Data Protection Techniques

Practical Examples

Secure Remote Access

Set up secure access to cloud resources using VPNs or SSH.

Protecting Against Data Breaches

Implement measures to prevent and mitigate data breaches, including encryption, intrusion detection, and incident response plans.

Responding to Incidents

Develop a plan for responding to security incidents, including containment, investigation, and remediation.

3

1

NUTRIE

100

NUMBER OF STREET

11000

Troubleshooting and FAQs

Solution

Challenge

Unauthorized access

Data breaches

Implement data loss prevention tools, encrypt sensitive data, and

Review access controls, enforce

strong passwords, and enable

multi-factor authentication.

conduct regular security audits.

Network outages

Utilize redundancy and failover mechanisms, monitor network performance, and optimize cloud resources.

Key Takeaways and Next Steps

Prioritize Security

Cloud security is a continuous process that requires ongoing attention.

Embrace Best Practices

Follow industry-standard security practices and guidelines.

Stay Informed

Keep up-to-date on emerging threats and security vulnerabilities.

Week-05

Building and Managing Scalable Networks

Welcome to this lab module on building and managing scalable networks.

Module Objectives

Network Architecture

Device Configuration

Troubleshooting Techniques

Understand key network components and their roles.

Learn to configure routers and switches.

issues.

Practice identifying and resolving network

Equipment and Software

Cisco Routers	Cisco Sw
For routing traffic between networks.	For connection network.
Network Cables	Network I Software

For physical connections between devices.

For monitoring and managing network performance.

vitches

ing devices within a

Management

Preparation

Lab Environment Setup

1

2

Network Fundamentals Review

Connect routers, switches, and devices as per the lab instructions. Refresh knowledge of IP addressing, subnetting, and network protocols.

Network Design and Configuration

Routing Protocols

VLANs

Configure OSPF or RIP for efficient routing.

Implement virtual LANs to segment traffic and enhance security.

resources.

Access Control Lists (ACLs)

Define rules to restrict access to sensitive

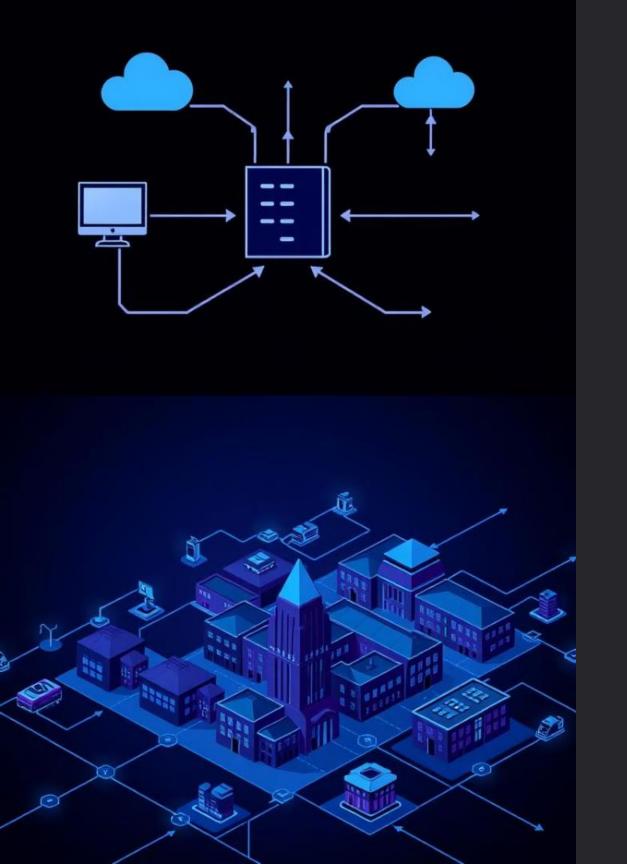
Monitoring and Troubleshooting

Packet Capture

Analyze network traffic to diagnose problems.

رح

Logging


Monitor network events and identify potential issues.

oOO

Performance Analysis

Track network metrics to identify bottlenecks.

Case Studies

1

2

Small Business Network

Scaling a network for growth, adding new users and services.

University Campus Network

Managing a large-scale network with complex routing and security needs.

Hands-On Lab

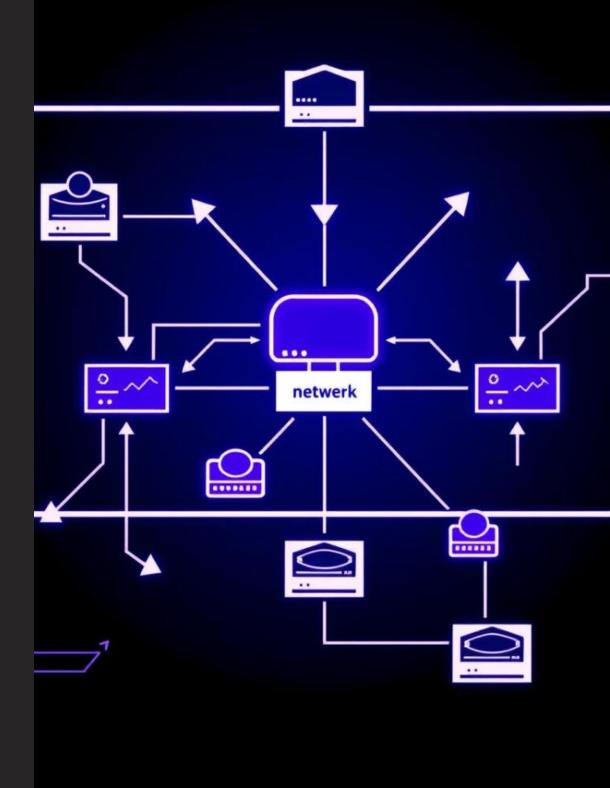
1

2

Configure Redundant Paths

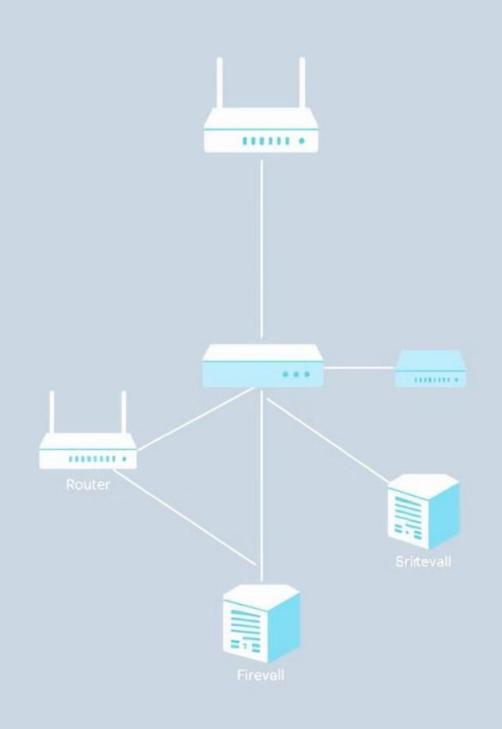
Implement failover mechanisms for critical network links.

Implement Security Measures


Apply firewalls, intrusion detection, and other security protocols.

Key Takeaways and Next Steps

Scalability is essential for modern networks. Best practices for network management include careful planning, regular monitoring, and proactive troubleshooting.



Week-6

Network Security Architecture Design: Best Practices

Welcome to this lab module where we will delve into the principles of network security architecture, covering key concepts, best practices, and hands-on activities.

Objectives

Fundamentals

Gain a comprehensive understanding of fundamental network security principles and concepts.

Best Practices

Apply proven best practices to design and implement a secure network architecture.

Threat Identification

Identify common network security threats and vulnerabilities, including their characteristics and impact.

Equipment and Preparation

Hardware

Software

Networking devices such as routers, switches, firewalls, intrusion prevention systems (IPS), and intrusion detection systems (IDS).

Network topology diagram software (e.g., Visio), network configuration tools, and security assessment software.

Preparation Steps

1. Network Devices

Gather the necessary networking devices and ensure they are properly configured and connected.

2. Documentation

3. Security Tools

Prepare the required security tools, such as network analyzers, vulnerability scanners, and intrusion detection systems.

Obtain relevant network topology diagrams, configuration files, and threat assessment documents.

Securing the Network Perimeter

Firewall Configuration

Implement a robust firewall configuration that includes filtering rules based on IP addresses, ports, protocols, and applications.

Rule-Set Management

Establish a comprehensive set of firewall rules to control inbound and outbound traffic and block known malicious activities.

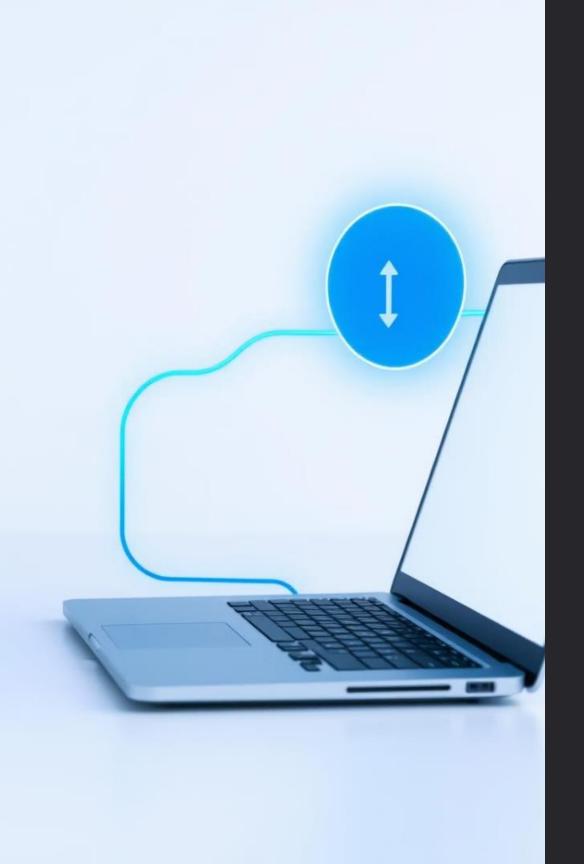
Implementing DMZ Architecture

1. Separate Zone

Create a DMZ (Demilitarized Zone) as a separate network segment for public-facing services.

1

2. Firewall Protection


Deploy a firewall between the DMZ and the internal network to protect sensitive data.

2

3. Access Control

Implement strict access control policies to limit access to the DMZ only for authorized users and services.

3

Managing Remote Access and **VPNs**

Secure Tunnels

Utilize strong encryption and authentication protocols to secure VPN connections.

Access Control

Implement granular access control policies to limit access to specific resources based on user roles.

Regular Updates

2

3

Keep VPN software and firmware up-to-date to patch vulnerabilities and enhance security.

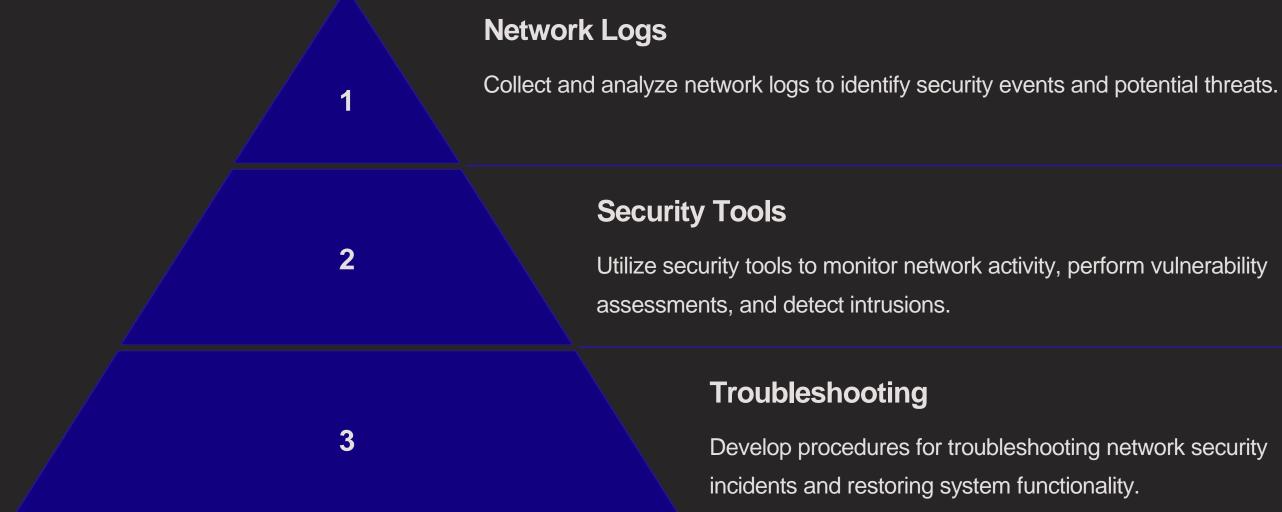
Best Practices for Network Security

Eo

Firewall

Implement a multi-layered firewall strategy with strong rules and security policies.

Intrusion Detection


Utilize IDS/IPS systems to monitor network traffic for suspicious activities and block potential threats.

Encryption

Encrypt sensitive data in transit and at rest to protect it from unauthorized access.

Data Collection and Troubleshooting

Key Takeaways and Next Steps

This lab module has equipped you with the knowledge and practical skills to design a secure network architecture. As you continue your network security journey, explore advanced security concepts, participate in security certifications, and stay informed about emerging threats and best practices.

Week-07

Advanced IPSec and SSL/TLS Configurations

This module covers advanced configurations of IPSec and SSL/TLS to secure network communications.

Objectives

1

Secure Network Communications

Protect sensitive data during transmission.

2

Implement IPSec VPN

Establish a secure tunnel between networks.

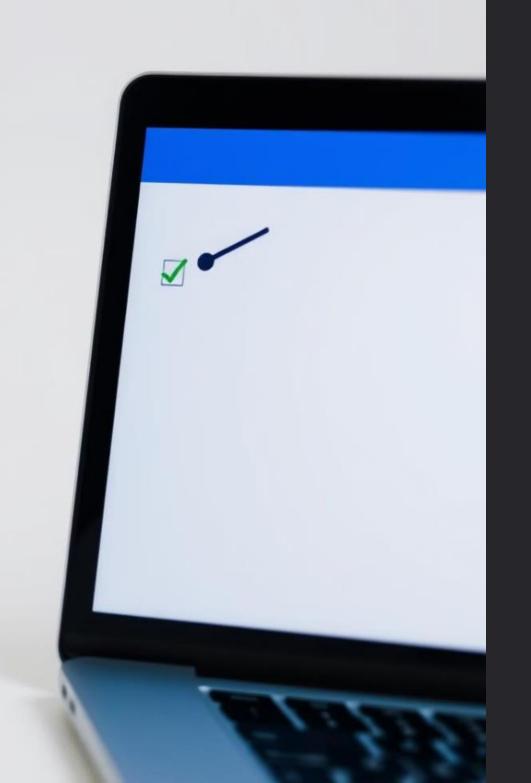
3 Configues Server

Secure web traffic with encryption.

Configure SSL/TLS for Web

Equipment

Network Devices


- Firewall
- Router
- Switch

Server

Client

Web Server

• VPN Client

Preparation Steps

Software Installation

Install necessary VPN and SSL/TLS software.

IP Addressing

to devices.

Enable HTTPS

Configure web server to use HTTPS protocol.

Assign appropriate IP addresses

IPSec VPN Setup

SSL/TLS Configuration

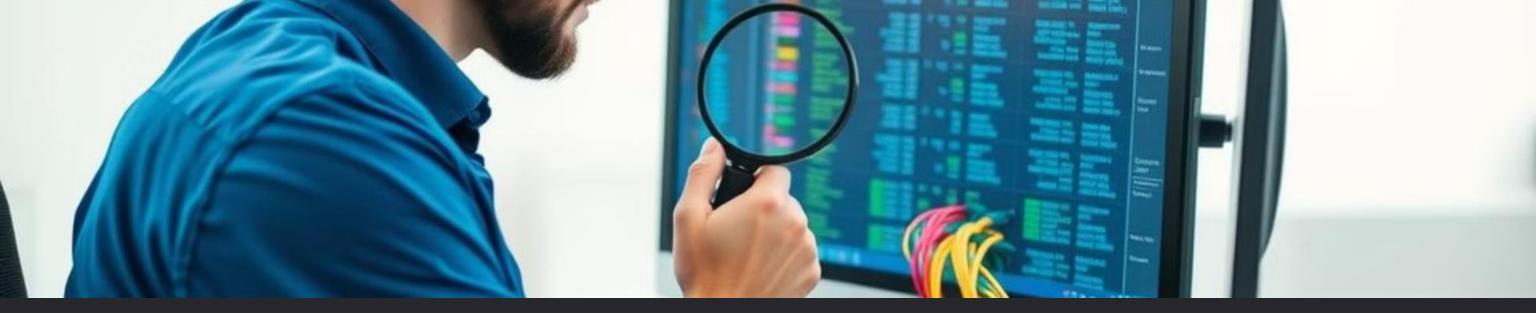
1

2

3

Certificate Generation

Create a digital certificate for the web server.


Cipher Suite Selection

Choose strong encryption algorithms.

Server Configuration

Configure the web server to use the certificate.

Troubleshooting

Packet Captures

Capture and analyze network traffic for issues.

 \Diamond

Logging

Review logs for security events and errors.

Error Messages

Identify and resolve common error messages.

Practical Example

Site-to-Site IPSec VPN

Web Server SSL/TLS Configuration

Connect two networks securely using IPSec VPN.

Configure web server to use SSL/TLS certificates.

Summary

2

3

Use strong passwords, keep software updated, and implement security controls.

Key Takeaways

IPSec and SSL/TLS are crucial for securing network communications.

Future Considerations

Stay informed about evolving security threats and update configurations as needed.

Week-08

Advanced Network Security: IPSec & SSL/TLS

Dive into the intricacies of securing network communications with advanced configurations of IPSec and SSL/TLS.

Objectives

Secure **Communications**

Enhance network security with advanced encryption and authentication protocols.

2

SSL/TLS Configuration 3

Secure web applications and protect sensitive information transmitted over the internet.

IPSec VPN Implementation

Establish secure and reliable connections for remote access and data exchange.

Equipment

Firewall

Enforces security policies and controls network traffic.

Router

Connects different network segments and directs data packets.

Switch

Connects devices on a local network and facilitates data exchange.

Web Server

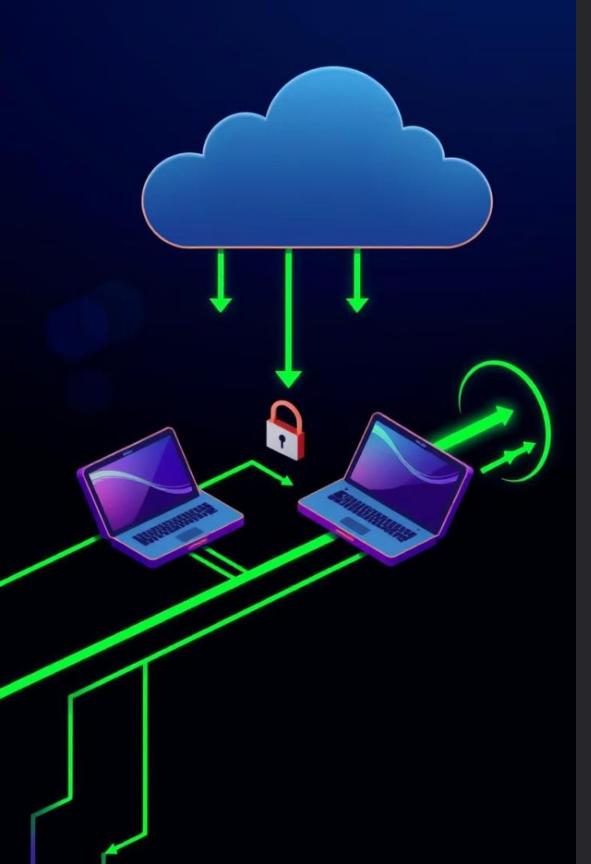
Hosts websites and serves web content to clients.

VPN Client

Enables remote users to connect to the VPN network securely.

Preparation

Software Installation


IP Addressing

Install required VPN software, web server software, and other relevant tools.

Assign IP addresses to devices and configure network connectivity.

Enable HTTPS

Configure the web server to use HTTPS for secure communication with clients.

IPSec VPN Setup

S

Phase 1 & 2

Negotiate security parameters and establish a secure tunnel.

IKE Policy

-'രി

Transform Sets

Specify encryption algorithms and key exchange methods for secure data transmission.

Associate security policies with network traffic for specific VPN connections.

Define authentication and encryption methods used in the VPN tunnel.

Crypto Maps

SSL/TLS Configuration

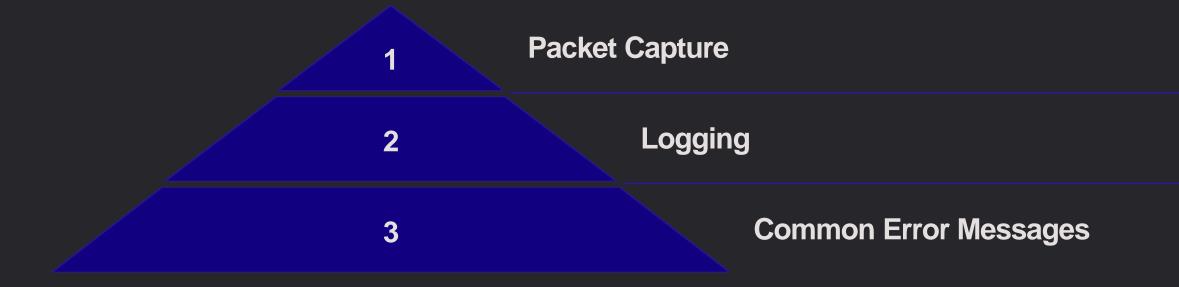
Certificate Generation

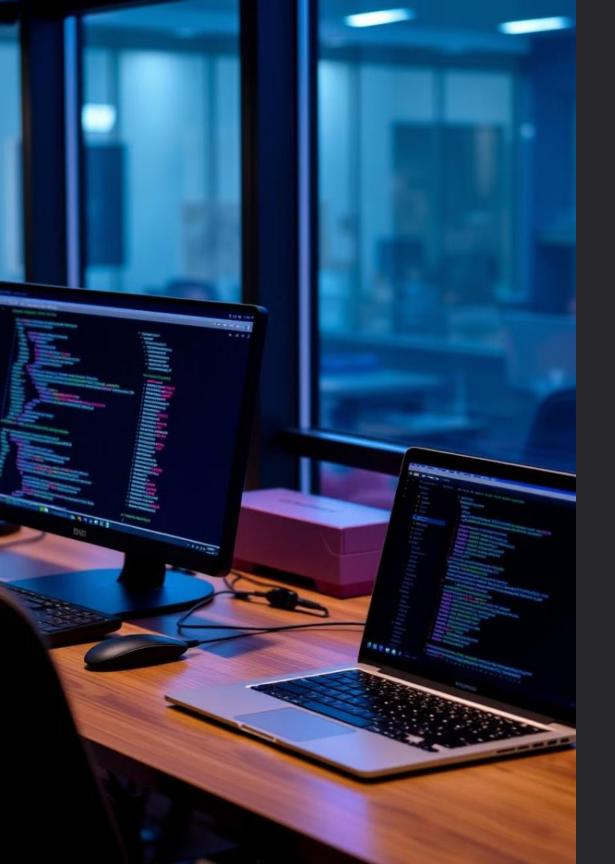
1

2

3

Create and install digital certificates for authentication and encryption.


Cipher Suite Selection


Choose strong encryption algorithms and key exchange methods for secure web traffic.

Server Configuration

Configure the web server to use SSL/TLS and bind the certificate to the server.

Troubleshooting

Practical Examples

Site-to-Site IPSec VPN

Web Server SSL/TLS

Connecting two networks securely for data exchange.

Securing a web server to protect sensitive information.

Key Takeaways

IPSec VPNs and SSL/TLS are essential for secure network communication.

Security Best Practices

Use strong encryption algorithms and implement security protocols consistently.

Future Considerations

Stay updated on new security threats and vulnerabilities and adjust configurations accordingly.

1

2

Week-09

Managing Multi-layer Switches for High Availability

This lab module will guide you through configuring, troubleshooting, and maintaining high availability in multi-layer switch environments.

Objectives

Configuration

Learn how to configure VLANs, routing, HSRP, and VPC on L3 switches for redundancy and failover.

Troubleshooting

Identify common issues and error messages that can arise in multi-layer switch environments.

Maintenance

high availability.

Understand best practices for monitoring network performance and maintaining

Equipment

L3 Switches

Cisco Catalyst 9300, Arista 7050X, or equivalent switches.

Network Cables

Cat5e or Cat6 Ethernet cables for connecting devices.

PCs

PCs or laptops for accessing the switch console and managing the network.

Preparation

1 Power On

Ensure all devices are powered on and connected to the network.

2 Review Documentation

Familiarize yourself with the vendor documentation for your specific switch models.

3 Safety Precautions

Review safety practices before working with L3 switches.

Configuration

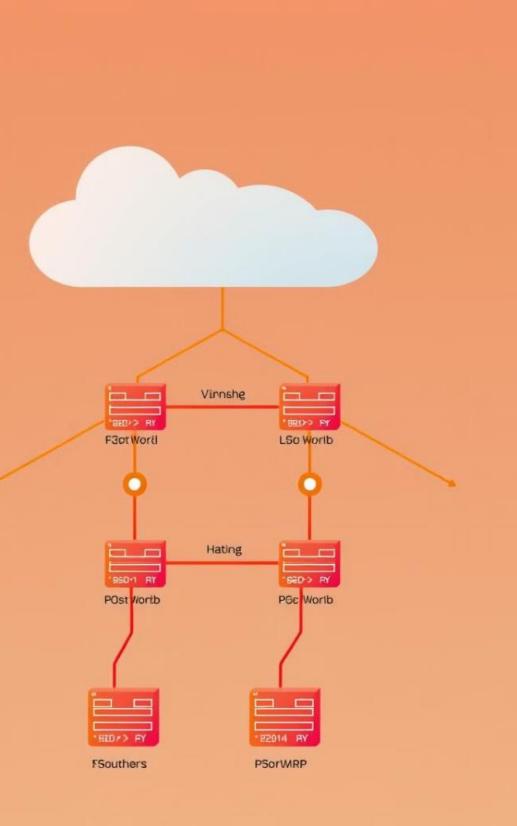
VLAN

Configure VLANs to segment the network and manage traffic flow.

____ Routing

2

3


Configure routing protocols (OSPF, RIP) to enable communication between VLANs.

_ HSRP

Configure HSRP to provide redundant default gateways and prevent network outages.

VPC

Configure VPC to create a highly available link between two L3 switches.

Verification

\checkmark

Failover

Test HSRP and VPC failover by simulating a switch failure.

—

Monitoring

Use monitoring commands (show ip route, show vtp status, etc.) to verify network status.

000

Data Collection

Collect network performance data (bandwidth utilization, packet loss) to identify potential bottlenecks.

Performanza Latency
23 15.00 251
0 01 Laten
C

Troubleshooting and Safety

Common Issues

VLAN misconfigurations, routing problems, HSRP conflicts.

Error Messages

Identify and analyze error messages related to HSRP, VPC, and other network features.

Safety Practices

Always disconnect power before working on live network components.

3

1

2

Conclusion

Takeaways

Understanding the concepts of VLAN, routing, HSRP, and VPC.

Resources

Vendor documentation, online forums, network communities.

Next Steps

Continue practicing and experimenting with multi-layer switch configurations.

1

2

Week-10

Network Monitoring and Management with SNMPv3 and Network Analyzers

This lab module will explore the fundamentals of network monitoring and management using industry-standard protocols and tools. You will gain handson experience configuring SNMPv3 on network devices and utilizing network analyzers to diagnose network issues.

Objectives

SNMPv3 Protocol

Learn the basics of the Simple Network Management Protocol (SNMP) version 3 and its advanced security features.

Network Device Configuration

Gain practical experience configuring SNMP on a Cisco router or switch, enabling secure communication with network management systems.

Network Analyzer Tools

Explore the capa analyzers for cap troubleshooting to performance both vulnerabilities.

- Explore the capabilities of network analyzers for capturing, analyzing, and
- troubleshooting network traffic to pinpoint
- performance bottlenecks and security

Understanding SNMPv3

Secure Communication

1

SNMPv3 provides a secure and authenticated way to manage network devices by implementing encryption and authentication mechanisms.

Access Control

It allows for granular control over access permissions, ensuring only authorized users can modify network configurations.

ILENSING MARKED IN COLUMN

3 Enhanced Security

SNMPv3 employs advanced cryptographic methods to protect sensitive network information and prevent unauthorized access.

2

Configuring SNMP on Network Devices

Step 1: Enable SNMP

Enable the SNMP service on the router or switch by entering the appropriate command.

Step 2: Create User Credentials

Define user accounts with specific security levels and authentication methods for accessing SNMP data.

Step 3: Configure Access

Create access control lists (ACLs) to restrict SNMP access based on user, community, and specific device attributes.

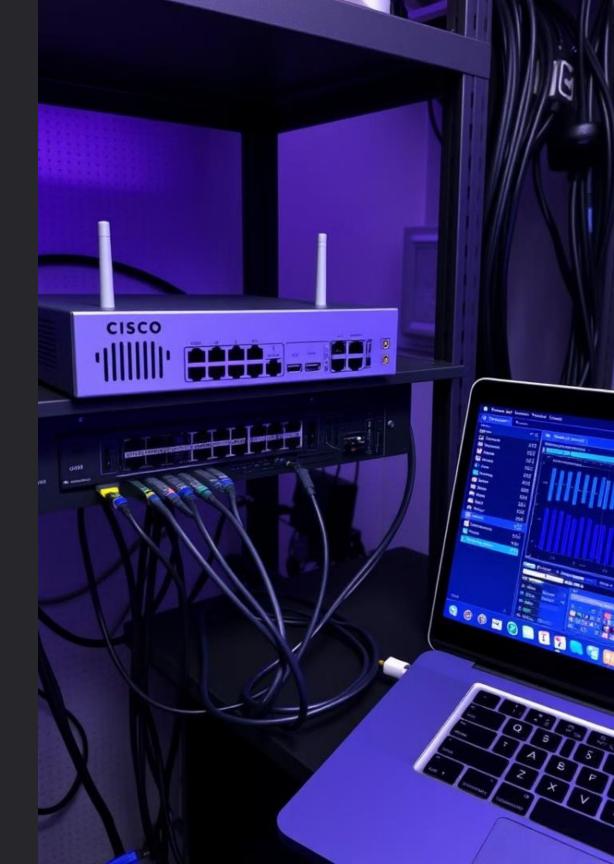
Network Analyzers: Tools for Monitoring and Troubleshooting

Wireshark

A powerful open-source network protocol analyzer for capturing and analyzing network traffic.

tcpdump

A command-line network packet analyzer for real-time analysis of network traffic.


SolarWinds

A comprehensive network performance monitoring (NPM) tool with advanced features for troubleshooting and analysis.

Equipment and Preparation

Device	Description	Quantity
Cisco Router/Switch	A network device that supports SNMPv3 configuration.	1
PC	A computer with network analyzer software installed (e.g., Wireshark).	1
Ethernet Cables	Cables for connecting the network devices and PC.	As needed

SNMP Configuration Steps

Step 1: Enable SNMP Service

Use the appropriate commands to enable SNMP on the network device.

Step 2: Configure SNMP Users

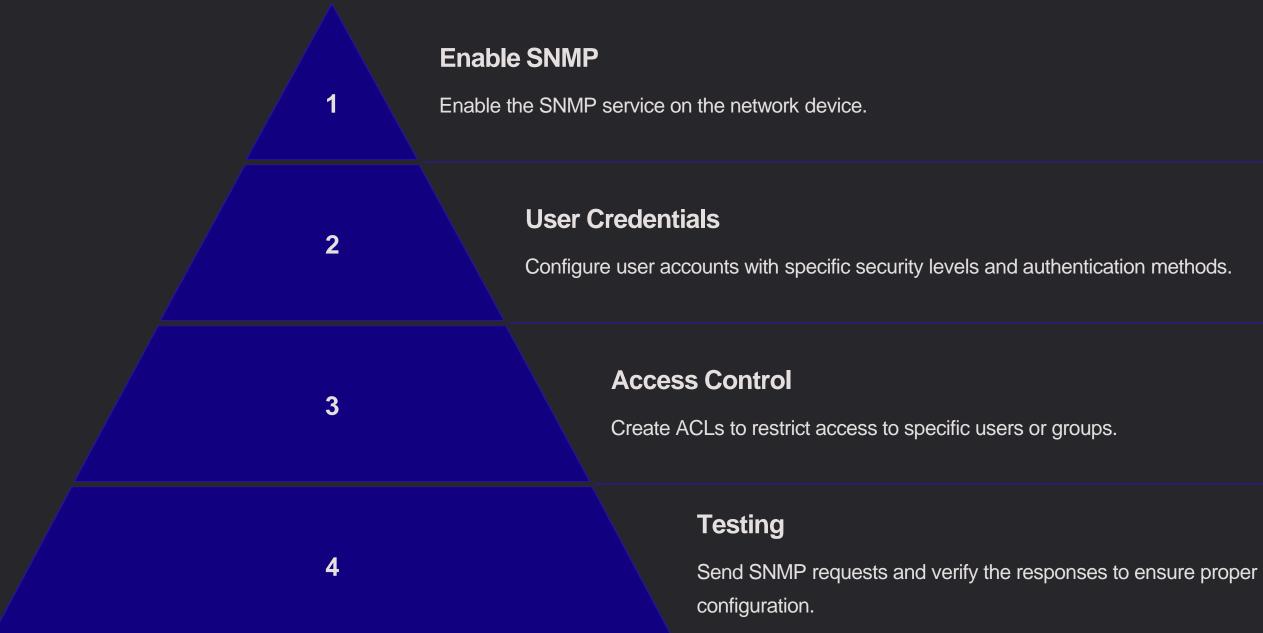
Create SNMP users with specific authentication and access levels.

Step 3: Define Access Control Lists (ACLs)

Create ACLs to restrict SNMP access based on users, communities, or specific device parameters.

Step 4: Verify Configuration

Test the SNMP configuration by sending SNMP requests and verifying the received responses.


4

1

2

3

SNMP Configuration and Verification

Network Analyzer Usage and Troubleshooting

Traffic Capture 1 Start the network analyzer and capture network traffic on the network interface. Packet Analysis 2 Analyze the captured network packets to identify patterns, protocol issues, or performance problems. Troubleshooting Use the analysis results to diagnose and resolve network 3 issues, such as network congestion, latency, or connectivity

problems.

Key Takeaways

By the end of this lab, you will have gained a thorough understanding of network monitoring and management using SNMPv3 and network analyzers. You will be able to configure SNMP on network devices, utilize network analyzers for troubleshooting, and gain valuable insights into network performance and security.

Week-11 **Distributed Denial of Service** (DDoS) Attacks and **Mitigation Techniques**

This module provides a hands-on lab experience to understand DDoS attacks and learn how to effectively mitigate them using network devices and monitoring tools.

Objectives

1 1. Understand DDoS attacks

Learn about the different types of DDoS attacks, their impact on network infrastructure, and the motivations behind them.

2. Analyze attack vectors

Identify common attack vectors used by attackers to launch DDoS attacks, and how they exploit vulnerabilities in network devices.

3 3. Implement mitigation techniques

Explore a range of mitigation strategies, from identifying and blocking malicious traffic to securing network devices and applications.

2

Equipment and Preparation

Equipment

- Network devices (e.g., router, switch) ۲
- Network monitoring tools (e.g., Wireshark, tcpdump) ۲
- Attack simulation software (e.g., hping3, ddos-tester) ۲

Preparation

- Ensure network devices are properly configured and updated. ۲
- Install and configure network monitoring tools. •
- Set up a controlled attack simulation environment to practice • DDoS mitigation.

DDoS Attack Anatomy

DDoS attacks are categorized into different types, each targeting specific vulnerabilities in network infrastructure.

DDOS ATTACK?

There trips at DDOS, arouthe DSOS strackest the sillgnstigloed getpretence, morling in gnetlyos, coenect on notios.

Dbos Attacks

iguss to feaus of ean framally loys.

go serctelly anter tilins semolegels, gret np remaice.

Treg seffeturcesss of neet and gwerts.

Highting tiended and ittis stiotlers. Logr the everyar fection ling syotil ander and alword

UDP FLEOD

Flodily drys

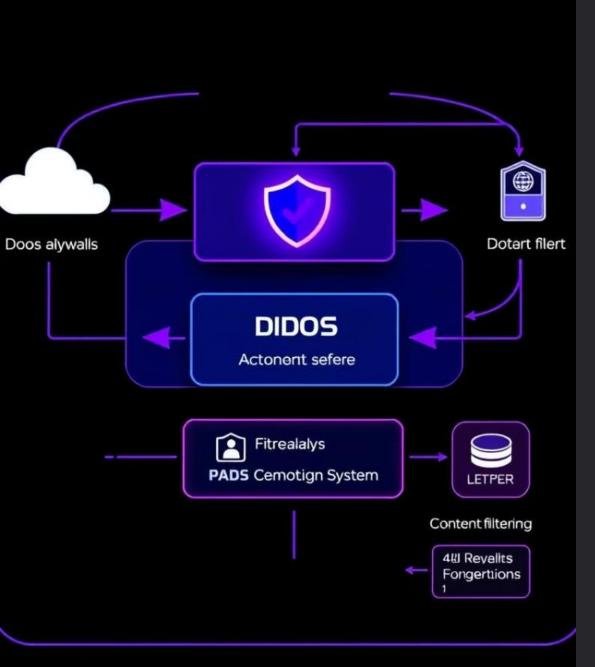
Target servers

Reg setect usig loor and dedi glaskes

Types of DDoS Attacks

Attack Type	Description
Volumetric Attacks	Flood the network with high- bandwidth traffic to exhaust resources.
Application-layer Attacks	Target specific application vulnerabilities to overwhelm server resources.
Protocol Attacks	Exploit vulnerabilities in network protocols to disrupt communication and network operations.
Resource Exhaustion Attacks	Overload specific resources, such as memory, CPU, or bandwidth, to hinder normal operations.

Potential Impact


Disruption of service, slow network performance, and potential network outages.

Service outage, data breach, and potential system compromise.

Disruption of service, network instability, and potential data loss.

Slow performance, service degradation, and potential system crashes.

Lagaed Seea Sweemuire

Mitigation Techniques

Identification

Early detection is crucial to minimize the impact of DDoS attacks. Utilize monitoring tools to identify unusual traffic patterns and analyze network behavior.

Prevention

Implement preventive measures, such as network segmentation, traffic filtering, and rate limiting, to block malicious traffic before it reaches the target server.

Response

Develop a response plan to quickly mitigate ongoing DDoS attacks by isolating affected systems, rerouting traffic, or contacting service providers.

Hands-on Lab: DDoS Simulation and Mitigation

1	1. Simulate DDoS attack Use attack simulation software to generate a DDoS attack against a target server.			
2	2. Monitor netv Use network monitor		twork traffic	
3				alicious traffic ured traffic to identify the source of the attack and the
4				4. Implement mitigation techniques Configure network devices and security tools to bl mitigate the attack.

This lab exercise will provide practical experience in simulating and mitigating DDoS attacks, enhancing your understanding of the techniques and their effectiveness.

he attack type.

block malicious traffic and

Key Takeaways

DDoS attacks are a growing threat

They can disrupt services, damage reputation, and result in significant financial losses.

Early detection and mitigation are crucial

Proactive measures, such as network security monitoring, are essential for preventing and responding to attacks.

Multiple mitigation techniques are available

A layered approach, combining various techniques, is often necessary to effectively defend against DDoS attacks.

DDDos Mitgiation

Next Steps

Explore advanced DDoS mitigation techniques, such as cloud-based DDoS protection services, and stay informed about emerging threats and attack patterns.

Distributed Denial of Service (DDoS) Attacks and Mitigation Techniques

This module provides a hands-on lab experience to understand DDoS attacks and learn how to effectively mitigate them using network devices and monitoring tools.

Week-12

Advanced Security Protocols

This lab module explores fundamental concepts and practical applications of three critical security protocols: HTTPS, IPSec, and Kerberos.

Lab Objectives

1. HTTPS

1

3

Understand the basics of HTTPS, including the SSL/TLS handshake and certificate management.

2

Learn the architecture, modes, and IKE protocol of IPSec.

3. Kerberos

Explore the authentication flow, ticket lifecycle, and common use cases of Kerberos.

2. IPSec

Equipment and Preparation

Workstation

Software

A computer with network connectivity.

A web browser, IPSec client, and Kerberos client.

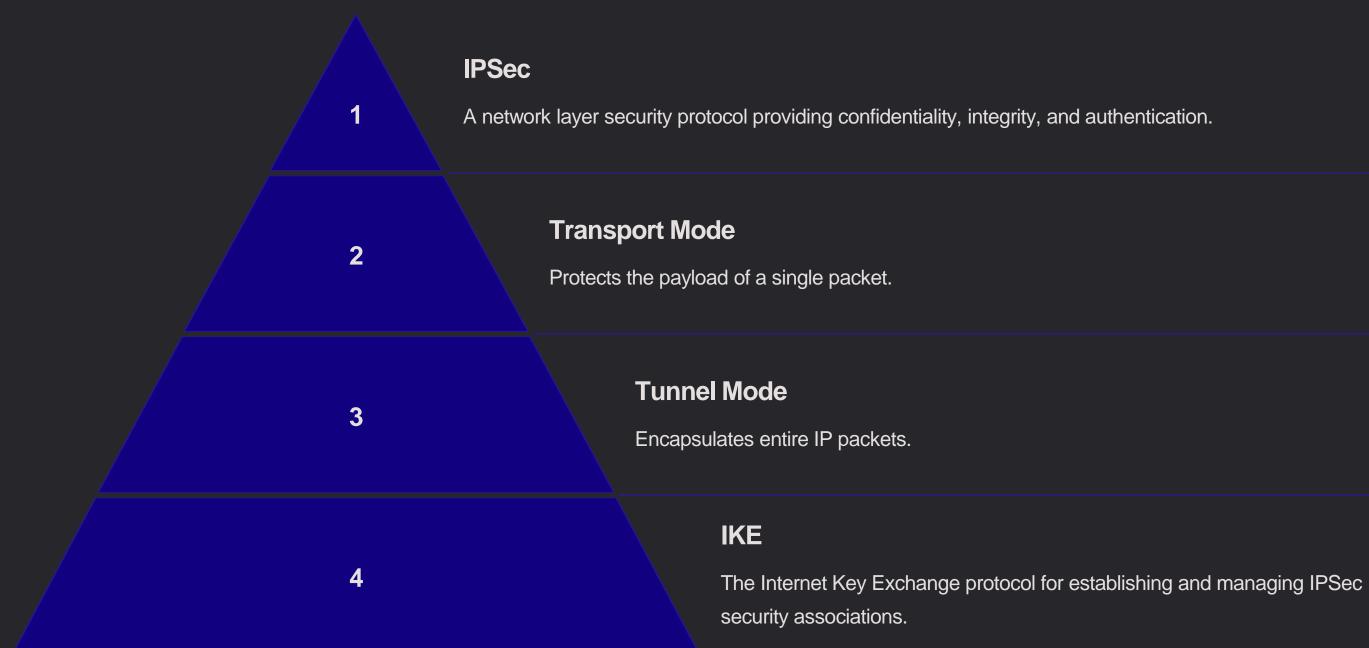
Network Diagram

A visual representation of the network environment for the lab.

HTTPS: Overview

Secure Communication

HTTPS provides secure communication channels for websites, preventing eavesdropping and data tampering.


SSL/TLS Handshake

This handshake establishes a secure connection, involves certificate authentication, and uses encryption algorithms.

Certificate Management

Understanding how certificates are issued, validated, and renewed for secure communication.

IPSec: Architecture

Kerberos: Authentication Flow

Client Request

1

2

3

4

The client sends a request to the authentication server for a ticket.

Authentication Server Response

The authentication server validates the client's credentials and issues a ticketgranting ticket.

Ticket Granting Ticket

The client uses the ticket-granting ticket to obtain a service ticket for a specific service.

Service Ticket

The client presents the service ticket to the service, enabling access and authentication.

Practical Examples

HTTPS Example

IPSec Example

Accessing a secure website like an online banking portal.

Creating a VPN connection between a home office and a company network.

Kerberos Example

server.

Logging into a corporate network or accessing a shared resource on a Unix

Troubleshooting

Issue	Possible Cause	Solution
HTTPS connection failure	Invalid or expired certificate	Update or replace th
IPSec tunnel issues	Misconfigured security policies	Verify and correct IF
Kerberos authentication errors	Incorrect credentials or server problems	Double-check login contact the network

the certificate.

PSec settings.

information and k administrator.

Key Takeaways

1

3

1. Encryption

HTTPS, IPSec, and Kerberos all rely on encryption to protect data.

2

identities.

3. Integrity

These protocols ensure that data remains unaltered during transmission.

2. Authentication

Each protocol uses different mechanisms to verify user

Resherearck soven, too pup a tuntatlination.
Researd in colurity secourt todlies.
Surcait bioter fore prottecal thoome.
Your facking is a creative shoist reciness.
Puace fack is a riter pontorinal cnervise gouse.

Next Steps

Continue exploring the use of these protocols in different scenarios, such as web applications, VPNs, and secure network authentication. Consider configuring these protocols on your own network for hands-on experience and further understanding.

Week-13

Cloud Security Best Practices and Solutions

Objective: Core Cloud Security Principles

Understand **Fundamentals**

Grasp key concepts like identity and access management, network security, and data protection.

Implement Effective Strategies

Learn how to implement security best practices in your cloud environment.

Equipment: Tools and Resources

Cloud Platform Access

Access to your chosen cloud provider's platform (AWS, Azure, GCP).

Security Monitoring Tools

Utilize security monitoring tools like SIEMs and log analyzers.

Relevant Documentation

Access to cloud provider documentation, security guides, and best practices.

Preparation: Setting the Foundation

Cloud Architecture Review

Analyze your cloud architecture to identify potential vulnerabilities.

Threat Landscape Assessment

Understand the evolving threat landscape and potential attack vectors.

Security Controls Evaluation

Review existing security controls and identify gaps or areas for improvement.

2

1

Procedure: Key Security Areas

Identity and Access Management

Implement strong authentication and authorization controls.

Network Security

2

3

Secure your network with firewalls, VPNs, and intrusion detection systems.

Data Protection

Protect sensitive data through encryption, access controls, and data masking.

Incident Response

Develop a comprehensive incident response plan for handling security breaches.

Firewalls

Intuusions

detercration systems

Security

detentied

controls

stivata Kends Advanica Reess Haffic 😽	Security Duran
Oriunt ~ Syents Hamily. IN Network In Security Syend > Security.	Security Event
Security Security Cerierts	
	R.C. Retine
The	State Hill, reportment
DIIB	
Netoies	Statute and the second
Real +-time Serts to fail Secure Alerts	100 pm 18.88
Deceity Scuets for Intagtieter Traffic Jecture Jupited Intert	400 ym: 23541 37/34
Secury Eavited Secling Day Left	SU06 jum 75.6/2 33.04
Density Cecess for Porogiler 8 Pert Ogtion Internety Index off	605 pm 716.44 737.46
Security Saves for Consomant Taffic Augusty Russel Over Const	400 lpm: 72,40 32,44
Deally Ports	300.pm: 05.4/3 21.04
Soudy Calets Stagger Fel Introgetier	800 pm: S1845 13:00
0 8 57.000 GADO	100 pm: 21412 57/88 SSS 184C courses

Security Controls: A Deep Dive

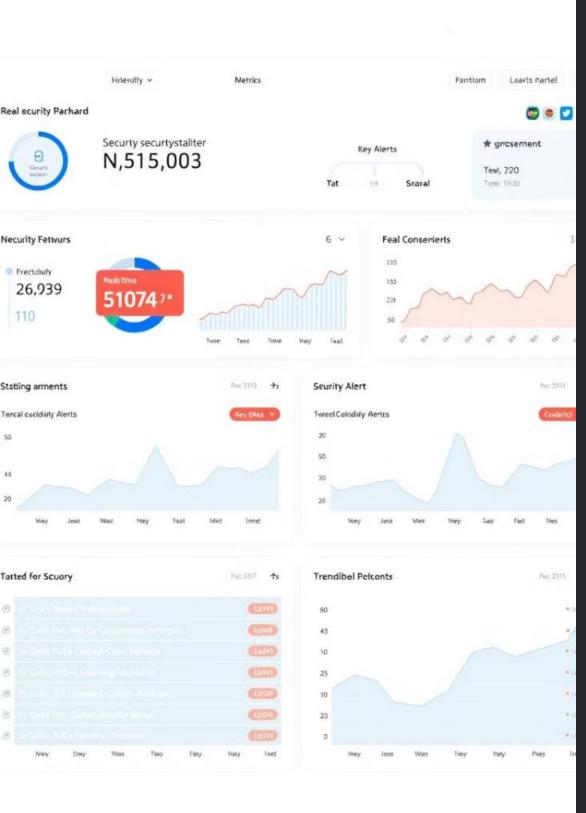
	Security Control	Purpose
	Encryption	Protect data at rest and in transit
	Logging and Monitoring	Detect and respond to threats
	Vulnerability Scanning	Identify and remediate security weaknesses

Example

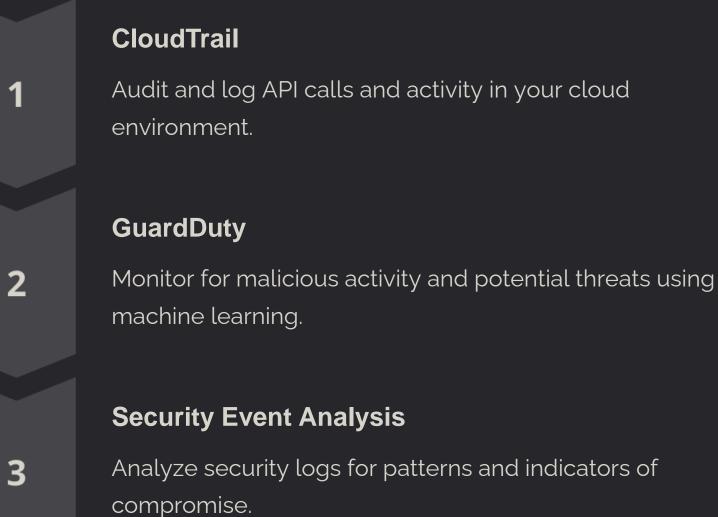
AES, SSL/TLS

CloudTrail, GuardDuty

AWS Inspector, Azure Security Center


Encryption: Data Protection

Data at Rest


Encrypt data stored on cloud storage services (S3, Blob Storage).

Data in Transit

Secure data transmission between applications and users (SSL/TLS, VPNs).

Logging and Monitoring: Threat Detection

Summary: Key Takeaways

1

2

3

4

Proactive Security

Adopt a proactive approach to cloud security.

Layered Defense

Implement a layered defense strategy.

Continuous Monitoring

Monitor your cloud environment continuously.

Regular Assessment

Conduct regular security assessments.

Week-14

Automating Network Configurations with Ansible and Puppet

This presentation will guide you through the process of automating network configurations using Ansible and Puppet.

Objectives

Learn the basics of Ansible and Puppet

Understand the core principles and functionality of these configuration management tools.

Automate network configurations

Gain practical skills in building Ansible playbooks and Puppet manifests.

Equipment and Preparation

Network Devices

At least one network device, such as a router or switch.

Configuration Management Tools

Ansible and Puppet installed on a workstation.

Text Editor

A code editor for writing Ansible playbooks and Puppet manifests.

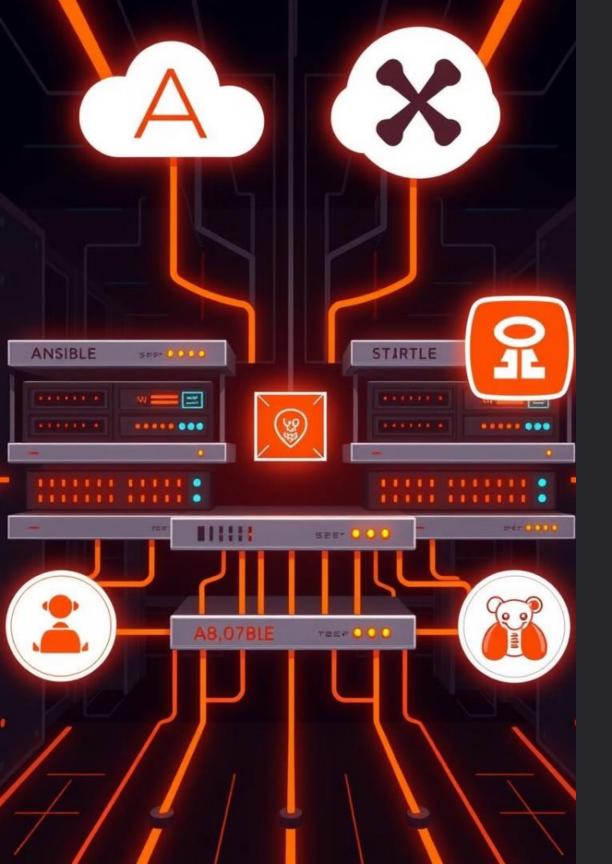
List of Network Devices and Tools

Device	Model	IP Address
Router	Cisco 2900 series	192.168.1.1
Switch	Dell PowerConnect 2824	192.168.1.2
Server	Ubuntu 22.04 LTS	192.168.1.10

Preparation Steps with Visuals

Install Ansible and Puppet

3


Use package managers like apt or yum to install the necessary software on your workstation. Configure Network Devices

Establish basic network configurations on your router and switch, such as IP addressing and VLANs.

Connect Devices

Connect the server and network devices according to the topology diagram.

Understanding Ansible and Puppet

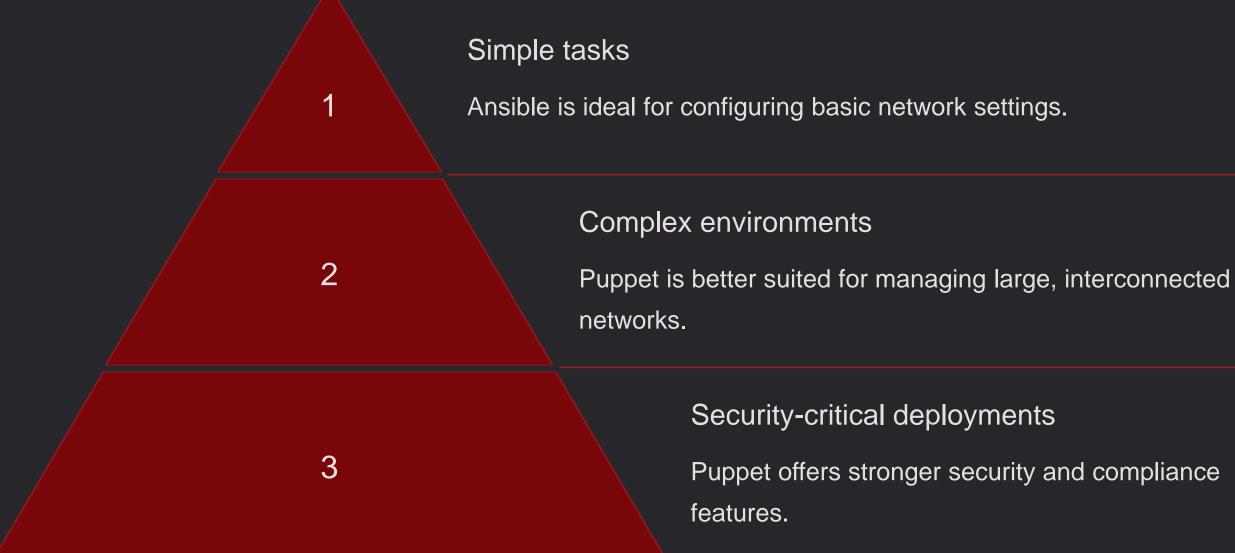
Ansible

Agentless configuration management tool that uses SSH to connect to devices and execute tasks.

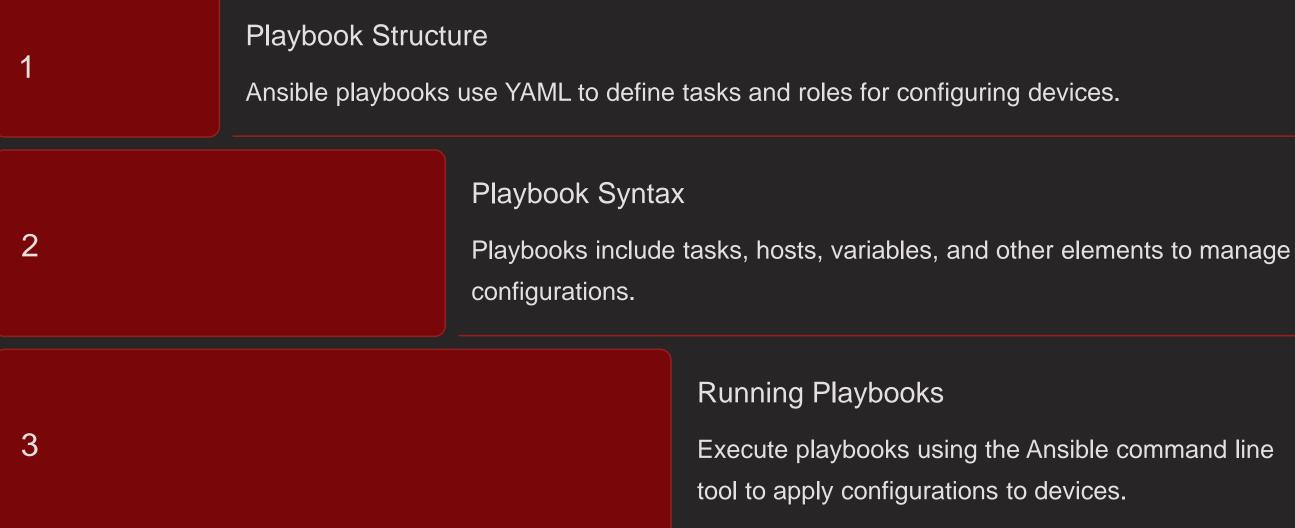
Puppet

Agent-based configuration management tool where agents on devices communicate with a central server.

Overview of the Two Configuration Management Tools


Ansible

- Simple to learn and use. ٠
- Agentless architecture. •
- Idempotent configurations. ۲


Puppet

- Robust and scalable for large environments. •
- Agent-based architecture. •
- Stronger security features. •

Differences and Use Cases

Configuring Ansible Playbooks

Key Takeaways

Automation

Configuration management tools like Ansible and Puppet streamline network configurations. 2

Efficiency

Reduce manual errors and improve consistency by automating repetitive tasks.

3

Scalability Manage large and complex networks effectively with automation tools.

Week-15

Disaster Recovery and Business Continuity Planning for Networks

This lab module will guide you through the essential steps of disaster recovery and business continuity planning for network infrastructure.

Presentation Objectives

Understand Disaster Recovery (DR) and Business Continuity (BC) principles

Gain a comprehensive understanding of the key concepts and goals of DR and BC in the context of network infrastructure.

Develop a DR and BC plan for network scenarios

Learn how to effectively plan for and respond to network disruptions through practical exercises and case studies.

Implement DR and BC strategies using real-world tools

Get hands-on experience with tools and techniques used for DR and BC, including backups, replication, and failover mechanisms.

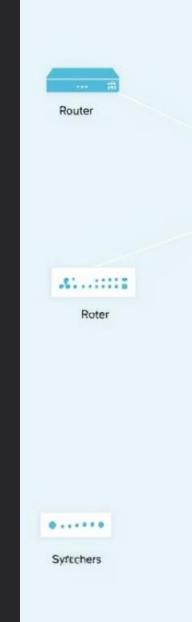
Network Devices and Equipment

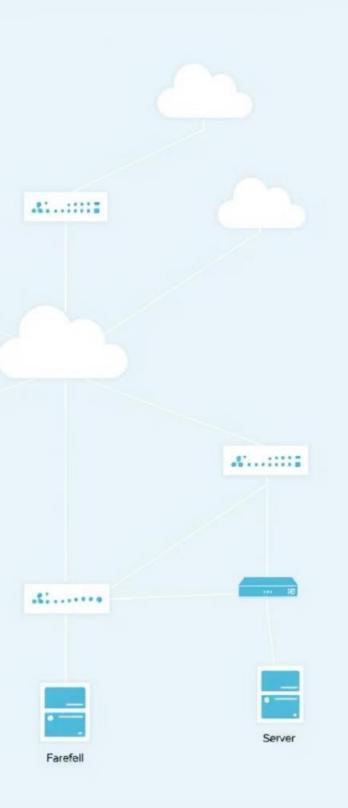
Routers

Direct network traffic between different networks, enabling communication and data transfer.

Switches

Connect devices within a network, providing efficient data sharing and communication paths.


Firewalls


Act as security barriers, blocking unauthorized access and protecting network resources.

Servers

Store and manage data, applications, and services, forming the core of network functionality.

Preparation and Safety Guidelines

1

Backup and Recovery

Create regular backups of critical network configurations, data, and software to facilitate restoration. 2 Test Your Plans

Conduct periodic drills and simulations to ensure your DR and BC plans are effective and everyone understands their roles.

3 Security Practices

Implement strong security measures to protect your network from unauthorized access, data breaches, and malware attacks.

Detailed Disaster Recovery Procedures Identify Critical Systems Determine the network components that are essential for business operations and must be restored quickly. Establish Recovery Time Objectives (RTOs) 2 Set specific timeframes for restoring critical systems and services following a disaster. Implement Redundancy and Failover Mechanisms 3 Deploy multiple network devices, connections, and data storage solutions to ensure continuous operation in case of failures. **Document Recovery Procedures** Create detailed step-by-step instructions for restoring network services and recovering data. 4 **Train and Test Personnel**

5

Ensure that all team members are adequately trained on disaster recovery procedures and can effectively execute the plans.

Data Collection and Troubleshooting

Monitoring Tools

Utilize network monitoring tools to gather real-time data on network performance, device health, and potential issues.

Log Analysis

Review system logs and event records to identify patterns, anomalies, and potential threats that may indicate a security breach.

Troubleshooting Techniques

Apply troubleshooting techniques to identify the root cause of network problems and implement appropriate solutions.

Documentation

Document all

troubleshooting steps,

solutions, and lessons

learned to improve future

disaster recovery efforts.

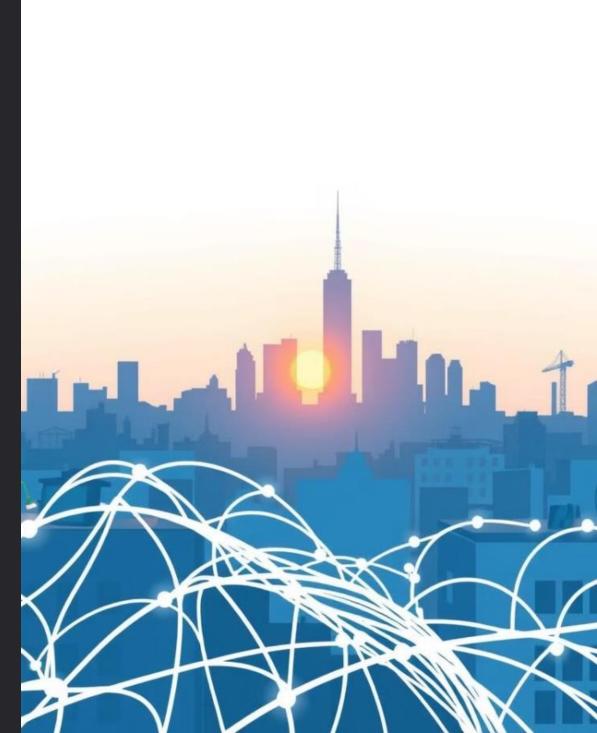
Frequently Asked Questions

How do I choose the right backup strategy?

The optimal backup strategy depends on your specific needs, network size, data sensitivity, and budget. Consider factors such as frequency, storage capacity, and recovery time objectives.

How do I ensure my DR plan is effective?

Regular testing, updates, and documentation are crucial for ensuring your DR plan is effective. Conduct drills and simulations to validate procedures and identify areas for improvement.


What is the difference between DR and BC?

Disaster recovery focuses on restoring IT systems and data following a disruptive event, while business continuity aims to ensure business operations continue with minimal interruption.

What

Key Takeaways and Closing Remarks

Disaster recovery and business continuity planning are essential for maintaining network resilience and ensuring business operations continue uninterrupted. By implementing effective strategies, organizations can protect their critical network infrastructure and minimize downtime in the event of a disaster.

Week-16

Redundancy and Fault Tolerance in Enterprise Networks

This lab module explores the fundamentals of network redundancy and fault tolerance, essential concepts for ensuring high availability and resilience in enterprise networks.

Objectives

Understand Redundancy

Explore the concept of network redundancy and its role in enhancing network reliability.

Identify Single Points of Failure

Learn to identify critical components that, if they fail, can disrupt network operations.

Implement Fault-Tolerant Designs

Apply practical techniques to design and implement networks that can withstand failures.

Equipment

Router

A device that connects different networks and forwards data packets between them.

Switch

Network Cables

Physical connections that carry data between network devices.

Software

Software that monitors network performance and identifies potential issues.

A device that connects devices within a network, enabling communication between them.

Network Monitoring

Preparation

Network Topology Setup

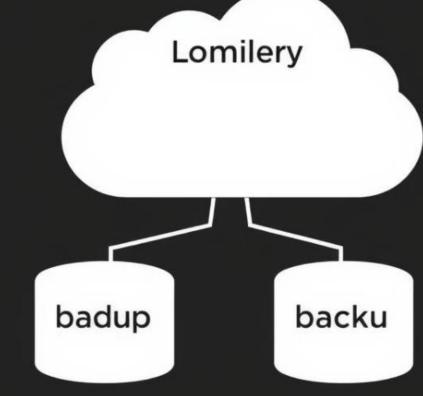
Establish a basic enterprise network topology using the provided equipment.

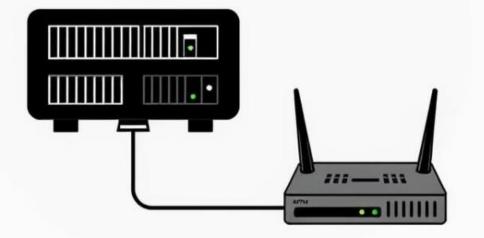
Component Identification

Identify key network components, including routers, switches, and workstations.

Redundancy in Network Design

Redundant Links


Creating multiple paths between devices to provide alternate routes in case of failures.


Redundant Devices

Having multiple devices of the same type available to take over if one fails.

Load Balancing

Distributing network traffic across multiple devices or links to avoid overloading a single point.

Fault Tolerance Strategies

Failover Mechanisms

Automatic switching to a backup device or path in case of failure.

Hot Standby

A redundant device that is constantly ready to take over if the primary device fails.

VRRP (Virtual Router Redundancy Protocol)

A protocol that enables failover for routers, ensuring continuous network connectivity.

HSRP (Ho Protocol)

A protocol that allows routers to share a virtual IP address, providing failover capabilities.

HSRP (Hot Standby Routing

Troubleshooting and Maintenance

Monitoring Tools

Utilize network monitoring software to track performance, identify issues, and ensure network stability.

Failover Testing

Regularly test failover mechanisms to ensure they function correctly and are ready to handle failures.

Best Practices

Implement best practices for network design, configuration, and maintenance to minimize the risk of failures.

Key Takeaways

1

2

3

Redundancy is Crucial

Implementing redundancy is essential for ensuring network availability and resilience.

Reduce Single Points of Failure

Identify and eliminate critical points that could cause widespread network outages.

Ensure Network Availability

Fault-tolerant designs help maintain continuous network operations, even during failures.

Week-17 Network and Security: A Comprehensive Review

Welcome to this comprehensive review of network and security concepts. This module will equip you with essential knowledge and hands-on experience in navigating the intricate world of networking and safeguarding digital landscapes.

Presentation Objectives

Understanding Network **Fundamentals**

Explore the foundations of network communication, including protocols, topologies, and key components.

Security Concepts and Practices

Delve into the principles of network security, focusing on threats, vulnerabilities, and mitigation strategies.

Gain practical experience through a guided lab exercise that reinforces theoretical concepts.

Hands-on Lab Experience

Required Equipment and Preparation

Laptop with Internet Access

Ensure your laptop has a stable internet connection for accessing online resources and completing lab exercises.

Software

Install a network simulator like GNS3 or Packet Tracer to create virtual network environments for practical experiments.

Basic Networking Knowledge

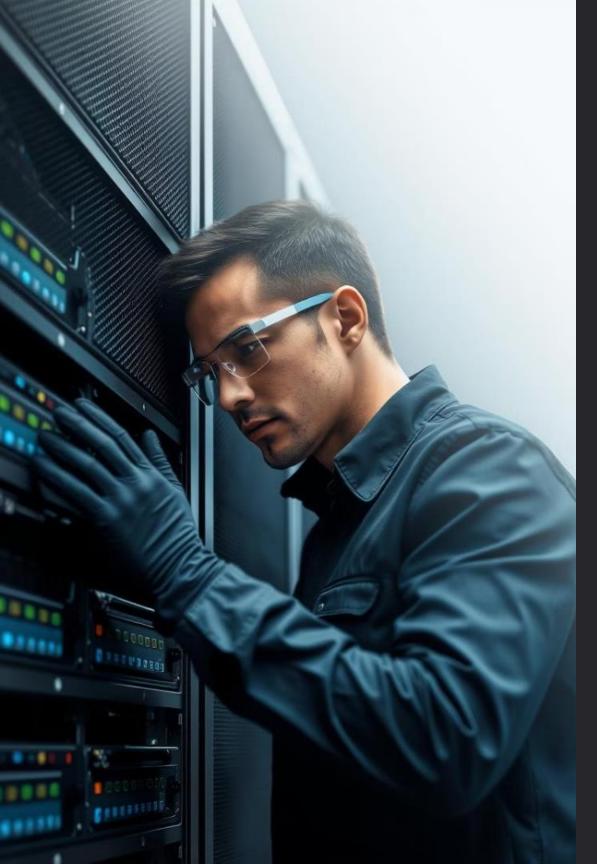
A foundational understanding of networking concepts is beneficial, but this module will provide a comprehensive overview.

Network Simulator

Detailed Lab Procedure and Diagrams

2


3


 Step 1: Set up the virtual network environment using the network simulator software.

Step 2: Configure basic network devices (routers, switches) with IP addresses and routing protocols.

Step 3: Implement security measures such as firewalls, intrusion detection systems, and access control lists.

Step 4: Test network connectivity and analyze network traffic patterns for security vulnerabilities.

Safety Considerations and **Practical Examples**

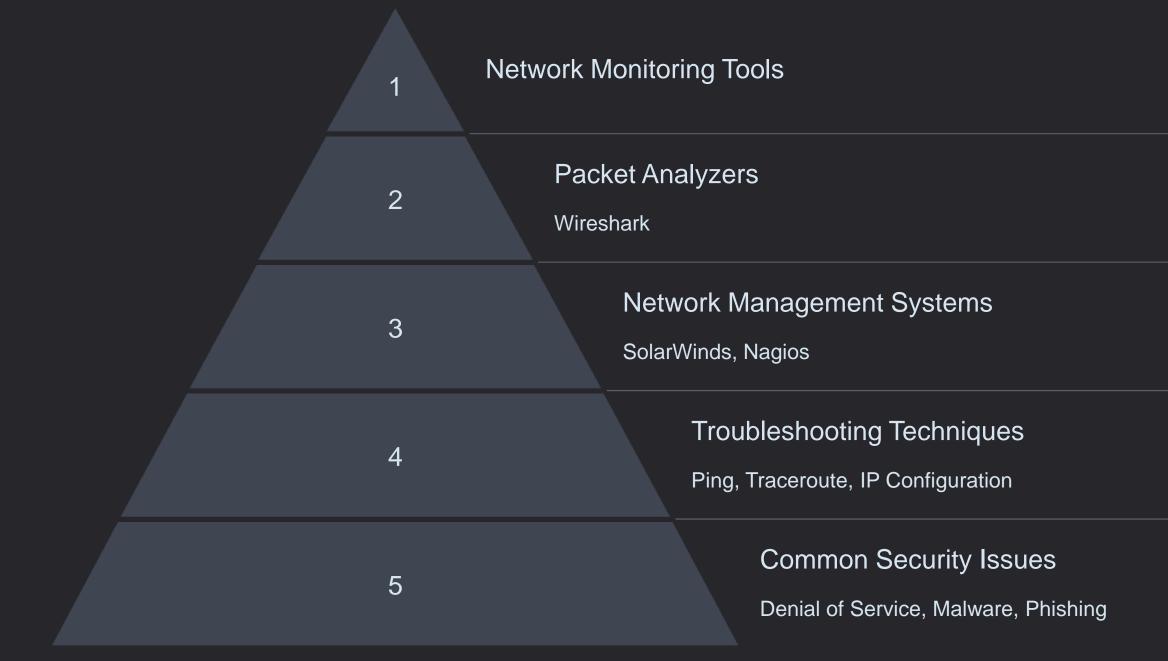
Eô

Password Security

Use strong and unique passwords for all network devices and accounts. Avoid using easily guessable passwords or sharing passwords with others.

Firewall Configuration Configure your firewall to block unauthorized access to your network and filter incoming and outgoing traffic based on specific rules.

Anti-Malware Protection


Install and maintain up-to-date anti-virus and anti-malware software to protect your network from threats.

Wireless Security Secure your wireless network with WPA2/WPA3 encryption and change the default SSID and password.

Data Collection, Troubleshooting, and FAQs

Confic Configuation	
Pesorinig Vace : IP Addrest	
Suble Swet Mask : 101769788	Part Contra () ()
Setting : 88527'4438	Torrotaty 📁 🗧 🌒
Gateway	
Carmract : S0aud 19	
Coffee Contect	Ext Togd Paged
Redowal	

Network Device Configuration Table

Device	IP Address	Subnet Mask	Default Gateway
Router	192.168.1.1	255.255.255. 0	N/A
Switch 1	192.168.1.10	255.255.255. 0	192.168.1.1
Server	192.168.1.20	255.255.255. 0	192.168.1.1
Client PC	192.168.1.30	255.255.255. 0	192.168.1.1

Key Takeaways and Closing Remarks

1	Network Security is Critical			
2		Vulnerabilit	ies Exist	
3			Proactive N	leasures are Essential
4				Constant Vigilance is Key